Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Symmetry ; 15(4):894, 2023.
Article in English | ProQuest Central | ID: covidwho-2295493

ABSTRACT

In many disciplines, including pattern recognition, data mining, machine learning, image analysis, and bioinformatics, data clustering is a common analytical tool for data statistics. The majority of conventional clustering techniques are slow to converge and frequently get stuck in local optima. In this regard, population-based meta-heuristic algorithms are used to overcome the problem of getting trapped in local optima and increase the convergence speed. An asymmetric approach to clustering the asymmetric self-organizing map is proposed in this paper. The Interactive Autodidactic School (IAS) is one of these population-based metaheuristic and asymmetry algorithms used to solve the clustering problem. The chaotic IAS algorithm also increases exploitation and generates a better population. In the proposed model, ten different chaotic maps and the intra-cluster summation fitness function have been used to improve the results of the IAS. According to the simulation findings, the IAS based on the Chebyshev chaotic function outperformed other chaotic IAS iterations and other metaheuristic algorithms. The efficacy of the proposed model is finally highlighted by comparing its performance with optimization algorithms in terms of fitness function and convergence rate. This algorithm can be used in different engineering problems as well. Moreover, the Binary IAS (BIAS) detects coronavirus disease 2019 (COVID-19). The results demonstrate that the accuracy of BIAS for the COVID-19 dataset is 96.25%.

2.
Mathematics ; 10(15):2742, 2022.
Article in English | MDPI | ID: covidwho-1969358

ABSTRACT

Feature selection (FS) is commonly thought of as a pre-processing strategy for determining the best subset of characteristics from a given collection of features. Here, a novel discrete artificial gorilla troop optimization (DAGTO) technique is introduced for the first time to handle FS tasks in the healthcare sector. Depending on the number and type of objective functions, four variants of the proposed method are implemented in this article, namely: (1) single-objective (SO-DAGTO), (2) bi-objective (wrapper) (MO-DAGTO1), (3) bi-objective (filter wrapper hybrid) (MO-DAGTO2), and (4) tri-objective (filter wrapper hybrid) (MO-DAGTO3) for identifying relevant features in diagnosing a particular disease. We provide an outstanding gorilla initialization strategy based on the label mutual information (MI) with the aim of increasing population variety and accelerate convergence. To verify the performance of the presented methods, ten medical datasets are taken into consideration, which are of variable dimensions. A comparison is also implemented between the best of the four suggested approaches (MO-DAGTO2) and four established multi-objective FS strategies, and it is statistically proven to be the superior one. Finally, a case study with COVID-19 samples is performed to extract the critical factors related to it and to demonstrate how this method is fruitful in real-world applications.

SELECTION OF CITATIONS
SEARCH DETAIL